1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
| import random
def div_fac( a, b ): if b != 0: result = div_fac( b, a % b ) else: result = a return result
def check_neg( a , b ): while a <= 0: a += b return a
def Leg_Prime( a , p ): a = a % p flag = 1 ; a_x = [] ; i = 2 ; tmp = a while i < tmp ** 0.5: if tmp % i == 0: tmp //= i a_x.append(i) i = 2 else: i += 1 else: a_x.append(tmp)
for i in a_x: if i == 2: if p % 8 == 1 or p % 8 == 7: flag *= 1 else: flag *= ( -1 ) elif i == -1 or a == p-1: if p % 4 == 1: flag *= 1 else: flag *= ( -1 ) elif i == 0: return 0 else: flag *= ( ( -1 ) ** (( a - 1 ) * ( p - 1 ) / 4 ) ) * Leg_Prime( p , i )
return flag
def ECC_Add( A , B , p , a): if A != B: dx = A[0] - B[0] dy = A[1] - B[1] else: dy = 3 * ( A[0] ** 2 ) + a dx = 2 * A[1] if dx == 0 : return 0 fac = div_fac( dx , dy ) dy //= fac dx //= fac tmp = dy % p check_neg( tmp , p ) while tmp % dx != 0: tmp += p k = tmp // dx C_x = ( k ** 2 - A[0] - B[0] ) % p check_neg( C_x , p ) C_y = ( k * ( A[0] - C_x ) - A[1] ) % p check_neg( C_y , p ) return (C_x,C_y)
def Find_Order( G , p , a ): flag = 1 ; A = G ; B = G while flag : flag += 1 A = ECC_Add(A,B,p,a) if (( A[0] ** 3 + A[0] + 1 ) % p ) == (( A[1] ** 2 ) % p ): if A[0] == G[0]: return flag + 1 else: print("Error!!!") print("在第 " + str(flag) + " 次运算后结果错误!") return -1
def ECC_PublickeyFind(p,a,G,d): A = G ; B = G i = 1 while i < d: i += 1 A = ECC_Add(A,B,p,a) if A == 0: i += 1 A = G return A
def ECC_M(m,p,a,b): M = [] for j in m.encode('utf-8'): j = j * 30 tmp = 0 ; flag = 0 while tmp < 100: x = j + tmp y_2 = ( x ** 3 + a * x + b ) % p tmp += 1 if Leg_Prime( y_2 , p ) == 1: for i in range(1,p): if ( i ** 2 - y_2 ) % p == 0: M.append(( x , i )) flag = 1 break if flag == 1: break else: print("明文某字节在嵌入曲线时 100 次没有得到平方剩余") exit() return M
def ECC_encode(M,G,K,r,p,a): r_G = ECC_PublickeyFind(p,a,G,r) r_K = ECC_PublickeyFind(p,a,K,r) C_1 = [] for i in M: C_1.append(ECC_Add(i,r_K,p,a)) print("C1为:",end='') for i in C_1: print(str(i) + ',' ,end='') else: print() print("C2为:" + str(r_G))
def ECC_Encrypt(p,a,b,G,n,d,m): K = ECC_PublickeyFind(p,a,G,d) print("公钥为:" + str(K)) M = ECC_M(m,p,a,b) r = random.randint(1,n-1) ECC_encode(M,G,K,r,p,a)
def ECC_Decrypt(C1,C2,d,p,a): C2_tmp = ECC_PublickeyFind(p,a,C2,d) C2 = (C2_tmp[0],-C2_tmp[1]) for i in C1: M = ECC_Add(i,C2,p,a)[0] // 30 print(chr(M),end='') print()
if __name__ == "__main__": p,a,b,G,n = 4177,1,1,(0,1),28 print("本程序使用曲线方程为:y^2 = x^3 + x + 1") print("参数 p 选择为 23,基点为 (0,1), n 为 28") print("为减小计算压力,本程序为ASCII字符集逐字节加密") d = eval(input("请输入私钥:")) m = input("请输入要加密的数据:")
ECC_Encrypt(p,a,b,G,n,d,m)
C1 = eval(input("请输入C1:")) C2 = eval(input("请输入C2:"))
ECC_Decrypt(C1,C2,d,p,a)
|